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1 Optical system and the generation of ground-truth data

The fringe projection system consists of a projector with a resolution of 1024 × 768 (DLP 4100,

Texas Instruments) and a camera with a resolution of 1280×800 (V611, Vision Research Phantom).

The projector illuminates test objects with pre-designed fringe patterns and the camera captures

the images simultaneously from a different perspective. The captured fringe patterns are 8-bit

grayscale images. In the data pre-processing stage, the input fringe pattern was normalized before

being fed into the deep neural networks. The schematic is shown in Fig. S1.

To generate ground-truth labels, the 12-step phase-shifting (PS) algorithm was applied. The

projected 12-step PS fringe patterns can be written as

Ipn(x
p, yp) = a+ b cos

(
2πfxp − 2πn

Nps

)
, (S1)

where (xp, yp) is the pixel coordinate of the projector, Nps = 12, and n = 0, 1, 2, ..., 11. Parameters

a, b, f are the DC component, amplitude and spatial frequency of the fringe pattern, respectively.
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Fig S1 Schematic of the fringe projection system.

The spatial frequency of the projected fringes is f = 160 in our experiments. These PS patterns

are projected onto a test object and the captured images can be expressed as

In(x, y) = A(x, y) +B(x, y)

[
φ(x, y)− 2πn

Nps

]
, (S2)

where (x, y) is the pixel coordinate of the camera, A the background signal, B the amplitude, and

φ the phase of test objects. The ground-truth numerator and denominator can be calculated as

M(x, y) =

Nps−1∑
n=0

In(x, y) sin

(
2πn

Nps

)
, (S3)

D(x, y) =

Nps−1∑
n=0

In(x, y) cos

(
2πn

Nps

)
. (S4)
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2 The structures of the base models

2.1 The structure of the U-Net

The first base model is U-Net and it structure is shown in Fig. S2. The input is a fringe image

and we train the model to learn to predict the numerator M and the denominator D. The input

fringe image in our experiments has resolution of W × H . It is then processed by the encoder,

where C channels of features are extracted from the fringe pattern (C = 50 in our experiments)

by the convolutional layer which is activated by the rectified linear unit (ReLU) as activation func-

tion, i.e., ReLU(x) = max(0, x). For deep convolutional layers, more channels (i.e., from 2C

to 16C) are utilized to extract the information of output data of the previous layer. The extracted

features are then down-sampled by 1/2 along both x and y directions. With the next several similar

down-sampling convolutional blocks that extract more image details at different scales, high-level

features of W
16

× H
16

× 16C are obtained by the encoder at last. They are then handled by the de-

coder that performs up-sampling to synthesize and recover the final results of the input image’s

original size. The up-sampling is carried out by bilinear interpolation, which is followed by some

convolutional layers. A skip connection can be found at each step of the decoder, which is used to

concatenate the convolutional layers’ output with feature maps from the encoder at the same level.

Features at different levels can be collected at the same time with this architecture. The last layer

is a convolutional layer, which is activated linearly. The numerator and the denominator can be

learned automatically by supervised learning.

2.2 The structure of the multi-path deep neural network

The second base model in our work is the multi-path deep neural network (MP DNN) and its

structure is shown in Fig. S3. The labeled dimension of each layer or block indicates the size of
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Fig S2 The architecture of U-Net used in our work. The network consists of an encoder and a decoder, which gives
it the u-shaped architecture. The input is a fringe pattern and the output is a two-channel tensor that consists of a
numerator and a denominator.

the output data. The input of the network is a fringe image. The size of the input image is W ×H .

Four data-flow paths are constructed to process the input images at different scales. In the first

path which keeps the original size of input data, the fringe images are successively processed by a

convolutional layer, a group of residual blocks and another convolutional layer. C is the number

of filters used in the convolutional layer and equals the number of channels of output data. Each

filter is used to extract a feature map (channel) for the output tensor. The same input data also

undergoes similar but more sophisticated procedures in the second to the fourth paths where the

data are first downsampled by ×2, ×4, and ×8 for high-level perceptions and then upsampled to

match the original dimensions. Eventually, the results of each data-flow path are concatenated to

produce the final output. With the design of multi-scale data-flow paths, geometric details that

the input images contain can be perceived precisely, ensuring the estimation of high-quality phase

information.

2.3 The structure of the Swin-Unet

Due to the limited visual field of the convolution operation, it is hard for CNNs to learn global in-

formation of input data. To further increase the diversity of the base models and to learn global fea-
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Fig S3 The architecture of the MP DNN in our work. It consists of several data-flow paths that can process the data
in different scales in parallel. The input is a fringe pattern and the output is a two-channel tensor that consists of a
numerator and a denominator.

tures, a state-of-the-art vision transformer is utilized as one of the base models. To be concrete, it

is the Swin-Unet that is a pure Transformer-based U-shaped architecture and it is shown in Fig. S4.

Different from the traditional CNN network, the Swin-Unet uses Transformer to replace the convo-

lution layer. Also, the minimum processing unit is changed from pixels to patches. The operation

between the original image and the convolution kernel is transformed into the calculation of the

correlation between each patch in each window. The Swin Transformer block is used to build the

encoder, bottleneck and decoder. Like other base models, the input of Swin-Unet is a fringe pattern

of H ×W . It is then converted into several patches through the partition and embedding module.

P × P pixels are embedded in a patch without overlapping. In the encoder, two consecutive Swin

Transformer block modules learn features from tokenized inputs. The Swin Transformer block is

composed of LayerNorm (LN) layers, multi-head self-attention module, residual connection and

2-layer MLP with GELU non-linearity. The window-based multi-head attention module (W-MSA)
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performs attention calculation within the window.The moving-window-based multi-head attention

module (SW-MSA) uses the sliding window method to achieve the information interaction be-

tween different windows. The patch merging module divides the input patches into four parts and

concatenates them together, and up-samples the feature dimension to 2× the original dimension

by the linear layer. In the structure of the encoder, the Swin Transformer block module and the

patch merging module are cyclically arranged. High-level features of H
8P

× W
8P

× 8C are obtained

by the encoder at last. After the bottleneck consisting of two Swin Transformer block modules,

we use the patch expand module in the decoder to up-sample the extracted deep features. The

patch expanding layer reshapes the feature maps of adjacent dimensions into large feature maps

with 2× up-sampling of resolution. The output of the patch expanding module and the multi-scale

features of the encoder of the same level are fused through skip connections. The fusion features

of different layers are collected by this structure, and finally the feature map is up-sampled to the

original resolution of H ×W through the patch reverse module, generating the numerator and the

denominator.

3 Tests of different kinds of objects

Here, we measured more objects to verify the performance of our approach for unseen scenarios

which include an intersection of a cone and a cylinder (Scenario 1), a pair of ceramic spheres

(Scenario 2), a glasses case (Scenario 3), a scene that contains a face mask and a cylinder (Scenario

4), and a statue (Scenario 5). Figure S5 (a) shows the captured fringe patterns. A 7-fold average

ensemble was used to generate seven groups of training data, which were used to train our base

models. The adaptive ensemble was then used to combine the outputs of base models and make the

final predictions. The predicted wrapped phase maps are shown in Fig. S5 (b). For comparison, a
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Fig S4 The architecture of the Swin-Unet. Different from the U-Net and the MP DNN which are convolutional neural
networks, the Swin-Unet uses the transformer to replace the convolutional layers. The input is a fringe pattern and the
output is a two-channel tensor that consists of a numerator and a denominator.
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single U-Net was also trained to analyze these fringe patterns. Figures S5 (c) and (d) demonstrate

the absolute phase errors of the U-Net and our method respectively. By comparing the overall error

distributions, we can see that our method greatly reduces the phase errors for all these scenes. For

detailed investigations, a region of interest (ROI) is selected from each scene. For scenarios 1 and

2, the edges of these objects have been measured with higher accuracy. For scenarios 3 and 4,

the errors of the texture boundaries and varying depth regions were suppressed successfully by the

proposed method. For the last scenario, there are many subtle details on the hair of the statue and

they were measured with large errors by the single U-Net. By contrast, when several models were

trained by our method to measure this area together, the accuracy has been improved significantly.
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Fig S5 Tests of different unseen objects. (a) Input fringe patterns of an intersection of a cone and a cylinder, a pairs
of ceramic spheres, a glasses case, a scene that contains a mask and a cylinder, and a statue. (b) The wrapped phase
maps obtained by our method. (c) The absolute phase errors of the single U-Net. (d) The absolute phase errors of our
method.

For quantitative investigations, we further compared the MAEs of the U-Net, the K-fold av-

erage ensemble, and the adaptive ensemble. The results are shown in Fig. S6. We can see that

both the proposed K-fold average ensemble and the adaptive ensemble show smaller MAEs than

the U-Net. As the adaptive ensemble trains a MultiResUNet to further combine the outputs ob-
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tained by the average ensemble, it demonstrates the smallest phase error. Among these scenarios,

the adaptive ensemble can decrease the MAE by at least 17% (i.e., for the second scenario). The

reason is that the spheres consist of smooth areas which are not difficult to measure for the U-Net.

For the fifth scenario which is the statue with complex shapes on the hair, the improvement is

quite obvious, as indicated by decreasing the MAE by 28%. This experiment demonstrates that

the generalization error of unseen objects can be reduced effectively by the proposed method using

ensemble learning.

17%

Declined by

28%
Declined by

Fig S6 The mean absolute phase errors of the adaptive ensemble, the K-fold average ensemble, and the single U-Net
for the tested scenarios.
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